ROLE OF MITOCHONDRIAL DNA ANALYSES IN PROVENANCING UNKNOWN HUMAN SKELETAL REMAINS: PROBABILITIES AND LIMITATIONS

Authors

  • JS Sehrawat Assistant Professor, Department of Anthropology, Panjab University, Chandigarh, Author

Keywords:

Mitrochondrial DNA, DNA profiling, unknown identification

Abstract

Ancient degraded remains of human origin can be
identified using ancient DNA analyses. The mitochondrial
DNA is a useful tool to solve unsolved cases in relation to
identification of an individual where nuclear DNA is too
degraded or insufficient to be used for the purpose.
Comparative analysis of mtDNA content in petrous bone
and the tooth-root cementum have revealed that later is
best substrate for studying genomic analyses of ancient
human populations The dental DNA is less prone to
contamination, and the preservation of ancient DNA from
dental samples is easier than bones. The selection of
correct decontamination method, appropriate extraction
protocol provides best results and thus increases value of
bones and teeth as a forensic evidence in cases where
identity establishment is problematic. In this review
article, the current status of the methods used in ancient
DNA research, the advantages and the limitations of this
archaeogenetical method have been presented.

Downloads

Download data is not yet available.

References

Adler, C. J., Haak, W., Donlon, D., Cooper, A., &

Genographic Consortium. (2011). Survival and

recovery of DNA from ancient teeth and bones.

Journal of Archaeological Science, 38(5), 956-964.

Alaeddini, R., Walsh, S. J., & Abbas, A. (2010). Forensic

implications of genetic analyses from degraded

DNA—a review. Forensic science international:

genetics, 4(3), 148-157.

Alakoç, Y. D., & Aka, P. S. (2009). “Orthograde

entrance technique” to recover DNA from ancient teeth

preserving the physical structure. Forensic science

international, 188(1), 96-98.

Bender, K., Schneider, P. M., & Rittner, C. (2000).

Application of mtDNA sequence analysis in forensic

casework for the identification of human remains.

Forensic science international, 113(1), 103-107.

Butler, J. M., & Levin, B. C. (1998). Forensic

applications of mitochondrial DNA. Trends in

biotechnology, 16(4), 158-162.

Caputo, M., Irisarri, M., Alechine, E., & Corach, D.

(2013). A DNA extraction method of small quantities

of bone for high-quality genotyping. Forensic Science

International: Genetics, 7(5), 488-493.

Damgaard, P. B., Margaryan, A., Schroeder, H.,

Orlando, L., Willerslev, E., & Allentoft, M. E. (2015).

Improving access to endogenous DNA in ancient

bones and teeth. Scientific reports, 5, 11184.

Desmyter, S., & De Greef, C. (2008). A more efficient

extraction method of human bone resulting in improved

DNA profiling. Forensic Science International:

Genetics Supplement Series, 1(1), 24-25.

Dukes, M. J., Williams, A. L., Massey, C. M., &

Wojtkiewicz, P. W. (2012). Technical note: Bone DNA

extraction and purification using silica coated

paramagnetic beads. American journal of physical

anthropology, 148(3), 473-482.

El Ossmani, H., Gazzaz, B., El Harrak, A., Boutayeb,

S., & El Amri, H. (2009). First identification of human

remains using mtDNA sequence analysis in Genetic

Laboratory of Royal Gendarmerie in Morocco.

Forensic Science International: Genetics

Supplement Series, 2(1), 271-272.

Harney E, Nayak A, Patterson N, Joglekar

P.........Reich D, Rai N. Ancient DNA from the

skeletons of Roopkund Lake reveals Mediterranean

migrants in India. Nature Communications (2019)

:3670 | https://doi.org/10.1038/s41467-019-11357-9

Hasan, M. M., Hossain, T., Majumder, A. K., Momtaz,

P., Sharmin, T., Sufian, A., & Akhteruzzaman, S.

(2014). An efficient DNA extraction method from bone

and tooth samples by complete demineralization

followed by the use of silica-based columns. Dhaka

University Journal of Biological Sciences, 23(2), 101-

Hensen, H.B., Damgaard, P.B., Margaryan, A.,

Stenderup, J., Lynnerup, N., Willerslev, E., Allentoft,

M.F. 2017. Comparing ancient DNA preservation in

petrous bone and tooth cementum. PLOS ONE DOI:

1371/journal.pone.0170940

Hervella, M., Iñiguez, M. G., Izagirre, N., Anta, A., &

de la Rúa, C. (2015). Nondestructive Methods for

recovery of biological material from human teeth for

DNA extraction. Journal of forensic sciences, 60(1),

-141.

Higgins, D., & Austin, J. J. (2013). Teeth as a source

of DNA for forensic identification of human remains:

a review. Science & Justice, 53(4), 433-441.

Higgins, D., Rohrlach, A. B., Kaidonis, J., Townsend,

G., & Austin, J. J. (2015). Differential nuclear and

mitochondrial DNA preservation in post-mortem teeth

with implications for forensic and ancient DNA studies.

PloS one, 10(5), e0126935.

Iwamura, E. S. M., Soares-Vieira, J. A., & Muñoz, D.

R. (2004). Human identification and analysis of DNA

in bones. Revista do Hospital das Clínicas, 59(6),

-388.

Kemp, B. M., & Smith, D. G. (2005). Use of bleach to

eliminate contaminating DNA from the surface of

bones and teeth. Forensic science international,

(1), 53-61.

www.IndianJournals.com

Members Copy, Not for Commercial Sale

Downloaded From IP - 103.57.187.179 on dated 15-May-2024

Kitayama, T., Ogawa, Y., Fujii, K., Nakahara, H.,

Mizuno, N., Sekiguchi, K., Yamamoto, K. (2010).

Evaluation of a new experimental kit for the extraction

of DNA from bones and teeth using a non-powder

method. Legal medicine, 12(2), 84-89.

Lee, H. Y., Park, M. J., Kim, N. Y., Sim, J. E., Yang, W.

I., & Shin, K. J. (2010). Simple and highly effective

DNA extraction methods from old skeletal remains

using silica columns. Forensic Science International:

Genetics, 4(5), 275-280.

Loreille, O. M., Diegoli, T. M., Irwin, J. A., Coble, M.

D., & Parsons, T. J. (2007). High efficiency DNA

extraction from bone by total demineralization.

Forensic Science International: Genetics, 1(2), 191-

Pusch, C. M., Broghammer, M., & Scholz, M. (2000).

Cremation practices and the survival of ancient DNA:

burnt bone analyses via RAPD-mediated PCR.

Anthropologischer Anzeiger, 237-251.

Rohland, N., & Hofreiter, M. (2007). Ancient DNA

extraction from bones and teeth. Nature protocols,

(7), 1756-1762.

Rothe, J., & Nagy, M. (2016). Comparison of two silica-

based extraction methods for DNA isolation from

bones. Legal Medicine, 22, 36-41.

Schwark, T., Heinrich, A., Preuße-Prange, A., & Von

Wurmb-Schwark, N. (2011). Reliable genetic

identification of burnt human remains. Forensic

Science International: Genetics, 5(5), 393-399.

Seo, S. B., Zhang, A., Kim, H. Y., Yi, J. A., Lee, H. Y.,

Shin, D. H., & Lee, S. D. (2010). Technical note:

Efficiency of total demineralization and ion exchange

column for DNA extraction from bone. American

journal of Physical Anthropology, 141(1), 158-162.

Shinde V, Narasimhan VM, Rohland N, Patterson N,

Rai N, Reich D. An ancient Harappan genome lacks

ancestry from steppe pastoralists or Iranian farmers.

Cell 2019; 179(3):P729-735.E10, doi: https://doi.org/

1016/j.cell.2019.08.048

Umetsu K, Yuasa I. Recent progress in mitochondrial

DNA analysis. Legal Medicine (Tokyo); 2005:7(4):

-262

Von Wurmb-Schwark, N., Harbeck, M., Wiesbrock,

U., Schroeder, I., Ritz-Timme, S., & Oehmichen, M.

(2003). Extraction and amplification of nuclear and

mitochondrial DNA from ancient and artificially aged

bones. Legal Med (Tokyo) Suppl 1: S169-72. doi:

1016/s1344-6223(02)00102-5

Published

2021-07-30

How to Cite

ROLE OF MITOCHONDRIAL DNA ANALYSES IN PROVENANCING UNKNOWN HUMAN SKELETAL REMAINS: PROBABILITIES AND LIMITATIONS . (2021). Journal of Forensic Medicine and Toxicology, 38(1), 1-7. https://jfmtonline.com/index.php/jfmt/article/view/203